AWS Glue vs Oracle Data Integrator

Last Updated:

Our analysts compared AWS Glue vs Oracle Data Integrator based on data from our 400+ point analysis of ETL Tools, user reviews and our own crowdsourced data from our free software selection platform.

Oracle Data Integrator Software Tool

Product Basics

AWS Glue is a fully managed, event-driven serverless computing platform that extracts, cleanses and organizes data for insights. Automatic code generation ensures citizen data scientists and power users can create and schedule integration workflows. An event-driven architecture enables setting triggers to launch data integration processes.

A common data catalog with automatic schema generation ensures data is unique and easily accessible. With streaming data integration, it catalogs assets from datastores like Amazon S3, making it available for querying with Amazon Athena and Redshift Spectrum. Developers can access readymade endpoints to edit and test code.

Pros
  • Serverless & Scalable
  • Easy Visual Workflow
  • Built-in Data Connectors
  • Pay-per-Use Pricing
  • AWS Ecosystem Integration
Cons
  • Complex Transformations
  • Limited On-Premise Data
  • Python & Scala Only
  • Potential Cost Overruns
  • AWS Lock-in Concerns
read more...
Oracle Data Integrator (ODI) is a data integration platform designed to extract, transform, and load (ETL) data from various sources to target systems. It offers a visual interface for building and managing data pipelines, including pre-built connectors for popular databases, applications, and cloud services. ODI is ideal for organizations needing to integrate data from diverse sources for business intelligence, data warehousing, and other analytical needs. Its key benefits include ease of use, scalability, high performance, and extensive out-of-the-box functionality. Popular features include graphical mapping interface, data quality checks, data lineage tracking, and support for complex data transformations. User reviews highlight ODI's strengths in simplifying complex data integration tasks, offering robust data quality tools, and ensuring efficient data processing. However, some users report occasional performance issues and limited flexibility compared to more open-source solutions. Pricing varies based on deployment options and required features, typically ranging from several thousand to tens of thousands of dollars per year, with payment options including annual licenses and subscription plans.

Pros
  • Easy to use interface
  • Strong data quality tools
  • High performance & scalable
  • Extensive built-in functionality
  • Connects to popular data sources
Cons
  • Occasional performance issues
  • Less flexible than open-source tools
  • Steeper learning curve for advanced tasks
  • Potentially high cost depending on deployment
  • Limited community support compared to open-source options
read more...
$0.44/M-DPU-Hour
Free Trial is unavailable →
Get a free price quote
Tailored to your specific needs
$0.09/OCPU, /Hour
Free Trial is unavailable →
Get a free price quote
Tailored to your specific needs
Small 
i
Medium 
i
Large 
i
Small 
i
Medium 
i
Large 
i
Windows
Mac
Linux
Android
Chromebook
Windows
Mac
Linux
Android
Chromebook
Cloud
On-Premise
Mobile
Cloud
On-Premise
Mobile

Product Assistance

Documentation
In Person
Live Online
Videos
Webinars
Documentation
In Person
Live Online
Videos
Webinars
Email
Phone
Chat
FAQ
Forum
Knowledge Base
24/7 Live Support
Email
Phone
Chat
FAQ
Forum
Knowledge Base
24/7 Live Support

Product Insights

  • Effortless Data Integration: Streamline data movement across diverse sources like databases, applications, and cloud storage with pre-built connectors and automated schema discovery.
  • Simplified Data Preparation: Clean, transform, and enrich data with a visual drag-and-drop interface and built-in transformations, eliminating the need for complex coding.
  • Serverless Scalability: Forget infrastructure management! Glue seamlessly scales to handle massive data volumes without upfront provisioning or ongoing maintenance.
  • Cost-Effective Flexibility: Pay-per-use pricing based on actual resource consumption makes Glue ideal for both small and large data pipelines, optimizing your costs.
  • Seamless AWS Integration: Leverage the power of the AWS ecosystem! Glue effortlessly integrates with S3, Redshift, and other AWS services, creating a unified data pipeline within your existing infrastructure.
  • Improved Data Accessibility: Deliver prepared data to data lakes, data warehouses, and analytics platforms, democratizing access for data scientists, analysts, and business users.
  • Enhanced Collaboration: Share data pipelines and workflows with other users and teams, fostering collaboration and streamlining data-driven workflows.
  • Centralized Data Catalog: Maintain a single source of truth for your data assets with Glue Data Catalog, ensuring data consistency and discoverability.
  • Continuous Monitoring and Optimization: Track job performance, identify bottlenecks, and optimize your pipelines for efficiency with built-in monitoring and logging tools.
  • Future-Proof Data Infrastructure: Stay ahead of the curve with Glue's serverless architecture and cloud-native approach, adapting to your evolving data needs with ease.
read more...
  • Maximize ROI: Reduces infrastructure costs by eliminating the need for an ETL server and engine. Save on labor costs with a smaller learning curve and reduce TCO with lower development costs. 
  • Integrate Disparate Data: Supports all RDBMS like Oracle, Exadata, Teradata, IBM DB2, Netezza, Sybase IQ, ERPs, LDAP, XML and flat files, among others. 
  • Deploy Faster: Enhance user experience and developer productivity with a flow-based declarative user interface. Enables developers to focus on describing what’s to be done visually, with data architects defining processes and executing data integration separately. Shorten implementation times and simplify maintenance. 
  • Map Big Data: Transform large, complex data sets by leveraging its flexible and highly performant architecture. Generate Apache Spark code as per big data standards, with native support for big data and parallel processing. 
  • Access Data 24*7: Scales as the data grows with clustered deployments for high availability. Optimizes workloads with JDBC connection pooling, load balancing and a connection retry mechanism to recover failed sessions. 
read more...
  • Console: Discover, transform and make available data assets for querying and analysis. Builds complex data integration pipelines; handles dependencies, filters bad data and retries jobs after failures. Monitor jobs and get task status alerts via Amazon Cloudwatch. 
  • Data Catalog: Gleans and stores metadata in the catalog for workflow authoring, with full version history. Search and discover desired datasets from the data catalog, irrespective of where they are located. Saves time and money – automatically computes statistics and registers partitions with a central metadata repository. 
  • Automatic Schema Discovery: Creates metadata automatically by gleaning schema, quality and data types through built-in datastore crawlers and stores it in the Data Catalog. Ensure up-to-date assets – run crawlers on a schedule, on-demand or based on event triggers. Manage streaming data schemas with the Schema Registry. 
  • Event-driven Architecture: Move data automatically into data lakes and warehouses by setting triggers based on a schedule or event. Extract, transform and load jobs with a Lambda function as soon as new data becomes available. 
  • Visual Data Prep: Prepare assets for analytics and machine learning through Glue DataBrew. Automate anomaly filtering, convert data to standard formats and rectify invalid values with more than 250 pre-designed transformations – no need to write code. 
  • Materialized Views: Create a virtual table from multiple different data sources by using SQL. Copies data from each source data store and creates a replica in the target datastore as a materialized view. Ensures data is always up-to-date by monitoring data in source stores continuously and updating target stores in real time. 
read more...
  • Simple Design: Save on a separate ETL server and engine; transform complex datasets using only the source and target servers. Deploys E-LT architecture based on existing RDBMS engines and SQL. Uses database CPU and memory to run transformations. 
    • Service-Oriented Architecture (SOA): Consolidate databases, ERP and middleware in a single business solution by building a shared services layer with Oracle SOA Suite. Improve bulk data transfer performance, business optimization, process visibility and exception handling. 
  • ODI Studio: Configure and manage ODI; administer the infrastructure, reverse engineer the metadata, develop projects, schedule, operate and monitor executions. 
  • Administer Centrally: Set up production environments, manage and monitor run-time operations and diagnose errors with the ODI Enterprise Edition Console. 
    • Get read access to the metadata repository, and perform topology configuration and production operations through a web-based UI. 
    • Integrates with the Oracle Enterprise Manager Fusion Middleware Control Console for single-screen monitoring of data integration and Fusion Middleware components. 
    • Manage all ODI environment components from Oracle Enterprise Manager Cloud Control through the Management Pack. 
  • Data Quality Firewall: Automatically detects and recycles faulty data before incorporating it in the target system – no need for programming. Follows the data integrity rules and constraints defined on the target platform and in ODI. 
read more...

Product Ranking

#9

among all
ETL Tools

#31

among all
ETL Tools

Find out who the leaders are

Analyst Rating Summary

88
95
100
100
92
100
62
88
Show More Show More
Data Delivery
Performance and Scalability
Platform Capabilities
Platform Security
Workflow Management
Data Delivery
Data Quality
Metadata Management
Performance and Scalability
Platform Capabilities

Analyst Ratings for Functional Requirements Customize This Data Customize This Data

AWS Glue
Oracle Data Integrator
+ Add Product + Add Product
Data Delivery Data Quality Data Sources And Targets Connectivity Data Transformation Metadata Management Platform Capabilities Workflow Management 100 92 62 90 96 100 100 100 100 88 96 100 100 89 0 25 50 75 100
100%
0%
0%
100%
0%
0%
85%
8%
7%
100%
0%
0%
36%
0%
64%
79%
0%
21%
88%
0%
12%
96%
0%
4%
90%
0%
10%
100%
0%
0%
100%
0%
0%
100%
0%
0%
100%
0%
0%
90%
0%
10%

Analyst Ratings for Technical Requirements Customize This Data Customize This Data

100%
0%
0%
100%
0%
0%
100%
0%
0%
100%
0%
0%

User Sentiment Summary

Great User Sentiment 165 reviews
Great User Sentiment 243 reviews
85%
of users recommend this product

AWS Glue has a 'great' User Satisfaction Rating of 85% when considering 165 user reviews from 3 recognized software review sites.

81%
of users recommend this product

Oracle Data Integrator has a 'great' User Satisfaction Rating of 81% when considering 243 user reviews from 5 recognized software review sites.

4.0 (46)
4.0 (17)
n/a
4.39 (18)
n/a
4.4 (18)
4.4 (109)
4.2 (69)
3.9 (10)
3.9 (121)

Awards

SelectHub research analysts have evaluated AWS Glue and concluded it earns best-in-class honors for Workflow Management.

Workflow Management Award

we're gathering data

Synopsis of User Ratings and Reviews

Cost-Effective & Serverless: Pay only for resources used, eliminates server provisioning and maintenance
Simplified ETL workflows: Drag-and-drop UI & auto-generated code for easy job creation, even for non-programmers
Data Catalog: Unified metadata repository for seamless discovery & access across various data sources
Flexible Data Integration: Connects to diverse data sources & destinations (S3, Redshift, RDS, etc.)
Built-in Data Transformations: Apply pre-built & custom transformations within workflows for efficient data cleaning & shaping
Visual Data Cleaning (Glue DataBrew): Code-free data cleansing & normalization for analysts & data scientists
Scalability & Performance: Auto-scaling resources based on job needs, efficient Apache Spark engine for fast data processing
Community & Support: Active user community & helpful AWS support resources for problem-solving & best practices
Show more
Easy to Use: Intuitive drag-and-drop interface simplifies data integration tasks, even for non-technical users.
Pre-built Connectors: Supports a wide range of data sources and targets, including databases, applications, and cloud platforms.
Scalable and Robust: Handles large data volumes and complex data integration processes efficiently.
Data Quality Management: Built-in features for data cleansing, validation, and transformation ensure data accuracy.
Workflow Automation: Schedule and automate data integration tasks for timely data delivery.
Security and Governance: Comprehensive security features and role-based access control ensure data privacy and compliance.
Show more
Limited Customization & Control: Visual interface and pre-built transformations may not be flexible enough for complex ETL needs, requiring manual coding or custom Spark jobs.
Debugging Challenges: Troubleshooting Glue jobs can be complex due to limited visibility into underlying Spark code and distributed execution, making error resolution time-consuming.
Performance Limitations for Certain Workloads: Serverless architecture may not be optimal for latency-sensitive workloads or large-scale data processing, potentially leading to bottlenecks.
Vendor Lock-in & Portability: Migrating ETL workflows from Glue to other platforms can be challenging due to its proprietary nature and lack of open-source compatibility.
Pricing Concerns for Certain Use Cases: Pay-per-use model can be expensive for long-running ETL jobs or processing massive datasets, potentially exceeding budget constraints.
Show more
Steep Learning Curve: Mastering ODI's features and functionalities requires significant training and experience.
Limited Open-Source Community: Compared to other ETL tools, ODI has a smaller open-source community, which can lead to fewer resources and support.
High Cost: Oracle Data Integrator can be expensive to purchase and maintain, especially for small and medium-sized businesses.
Limited Cloud Support: While ODI supports cloud deployments, its cloud capabilities are not as mature as some other ETL tools.
Performance Bottlenecks: Complex mappings and large data volumes can lead to performance issues.
Show more

User reviews of AWS Glue paint a picture of a powerful and user-friendly ETL tool for the cloud, but one with limitations. Praise often centers around its intuitive visual interface, making complex data pipelines accessible even to non-programmers. Pre-built connectors and automated schema discovery further simplify setup, saving users time and effort. Glue's serverless nature and tight integration with the broader AWS ecosystem are also major draws, offering seamless scalability and data flow within a familiar environment. However, some users find Glue's strength in simplicity a double-edged sword. For complex transformations beyond basic filtering and aggregation, custom scripting in Python or Scala is required, limiting flexibility for those unfamiliar with these languages. On-premise data integration is another pain point, with Glue primarily catering to cloud-based sources. This leaves users seeking hybrid deployments or integration with legacy systems feeling somewhat stranded. Cost also arises as a concern. Glue's pay-per-use model can lead to unexpected bills for large data volumes or intricate pipelines, unlike some competitors offering fixed monthly subscriptions. Additionally, Glue's deep integration with AWS can create lock-in anxieties for users worried about switching cloud providers in the future. Overall, user reviews suggest Glue shines in cloud-based ETL for users comfortable with its visual interface and scripting limitations. Its scalability, ease of use, and AWS integration are undeniable strengths. However, for complex transformations, on-premise data needs, or cost-conscious users, alternative tools may offer a better fit.

Show more

Oracle Data Integrator (ODI) receives mixed reviews, with users praising its intuitive interface, wide range of supported data sources, and robust data quality management features. However, some users find its learning curve steep and criticize its limited open-source community and high cost. Many users appreciate ODI's ease of use, particularly its drag-and-drop interface. One user noted, "ODI's intuitive interface made it easy to learn and use, even for someone with limited technical experience." This is a significant advantage compared to other ETL tools with steeper learning curves, like Informatica PowerCenter. ODI's wide range of pre-built connectors and support for various data sources is another highlight. "We were able to integrate data from a variety of sources, including databases, applications, and cloud platforms, without any major challenges," stated a user. This flexibility is crucial for modern businesses working with diverse data landscapes, especially compared to competitors like Talend which may require additional configurations for specific data sources. However, ODI's learning curve can be daunting for new users. One user commented, "It took me a while to feel comfortable using ODI, as I had to learn its specific terminology and concepts." Additionally, the limited open-source community can make it difficult to find answers or support online. "Compared to other ETL tools, the lack of a strong open-source community around ODI can be frustrating," noted a user. This is a disadvantage compared to open-source alternatives like Apache Airflow, which offer extensive online resources and communities. Another drawback is ODI's high cost. "The cost of ODI was a major concern for us, and we had to carefully consider our budget before making a decision," said a user. This high cost can be a deterrent for small and medium-sized businesses, particularly when compared to more cost-effective solutions like Pentaho Data Integration. Overall, ODI offers powerful data integration capabilities with a user-friendly interface and comprehensive data quality features. However, its steep learning curve, limited open-source community, and high cost can be significant drawbacks for some users. Ultimately, the decision of whether ODI is the right fit depends on individual needs and priorities.

Show more

Screenshots

Top Alternatives in ETL Tools


Azure Data Factory

Cloud Data Fusion

Dataflow

DataStage

Fivetran

Hevo

IDMC

Informatica PowerCenter

InfoSphere Information Server

Integrate.io

Oracle Data Integrator

Pentaho

Qlik Talend Data Integration

SAP Data Services

SAS Data Management

Skyvia

SQL Server

SQL Server Integration Services

Talend

TIBCO Cloud Integration

Related Categories

Head-to-Head Comparison

WE DISTILL IT INTO REAL REQUIREMENTS, COMPARISON REPORTS, PRICE GUIDES and more...

Compare products
Comparison Report
Just drag this link to the bookmark bar.
?
Table settings