Talend vs Dataflow

Last Updated:

Our analysts compared Talend vs Dataflow based on data from our 400+ point analysis of ETL Tools, user reviews and our own crowdsourced data from our free software selection platform.

Product Basics

Talend is an open-source data integration and management platform that enables big data ingestion, transformation and mapping at the enterprise level. The vendor provides cross-network connectivity, data quality and master data management in a single, unified hub – the Data Fabric. Based on industry standards like Eclipse, Java and SQL, it helps businesses create reusable pipelines – build once and use anywhere, with no proprietary lock-in.

The open-source version is free, with the cloud data integration module available for a monthly and annual fee. The price of Data Fabric is available on request.

Pros
  • Open source & affordable
  • Visual drag-and-drop UI
  • Wide range of connectors
  • Scalable & cloud-ready
  • Active community & support
Cons
  • Steeper learning curve
  • Limited native profiling
  • Customization can be complex
  • Debugging can be challenging
  • Enterprise features require paid editions
read more...
Dataflow, a streaming analytics software, ingests and processes high-volume, real-time data streams. Imagine it as a powerful pipeline continuously analyzing incoming data, enabling you to react instantly to insights. It caters to businesses needing to analyze data in motion, like financial institutions tracking stock prices or sensor-driven applications monitoring equipment performance. Dataflow's key benefits include scalability to handle massive data volumes, flexibility to adapt to various data sources and analysis needs, and unified processing for both batch and real-time data. Popular features involve visual interface for building data pipelines, built-in machine learning tools for pattern recognition, and seamless integration with other cloud services. Compared to similar products, user experiences highlight Dataflow's ease of use, cost-effectiveness (pay-per-use based on data processed), and serverless architecture, eliminating infrastructure management overheads. However, some users mention limitations in customizability and occasional processing delays for complex workloads.

Pros
  • Easy to use
  • Cost-effective
  • Serverless architecture
  • Scalable
  • Flexible
Cons
  • Limited customization
  • Occasional processing delays
  • Learning curve for complex pipelines
  • Could benefit from more built-in templates
  • Dependency on other cloud services
read more...
$4,800 Annually
Get a free price quote
Tailored to your specific needs
$1/250GB of Processed Data
Get a free price quote
Tailored to your specific needs
Small 
i
Medium 
i
Large 
i
Small 
i
Medium 
i
Large 
i
Windows
Mac
Linux
Android
Chromebook
Windows
Mac
Linux
Android
Chromebook
Cloud
On-Premise
Mobile
Cloud
On-Premise
Mobile

Product Assistance

Documentation
In Person
Live Online
Videos
Webinars
Documentation
In Person
Live Online
Videos
Webinars
Email
Phone
Chat
FAQ
Forum
Knowledge Base
24/7 Live Support
Email
Phone
Chat
FAQ
Forum
Knowledge Base
24/7 Live Support

Product Insights

  • Maximize ROI: Save money and time – build data pipelines faster. Lower operational costs with a zero-footprint solution. Build long-term customer associations by making reliable, accurate data available. Reduce risk and ensure regulatory compliance. Get a fast return on investment with its usage-based subscription model. 
  • Make Business Decisions Quicker: Live preview business data and diagnose issues instantly. Refer to dataset documentation to understand how datasets relate and change through the data flow and how variables used in analysis are defined. Transform data while maintaining optimum quality by applying built-in functions across batch and streaming pipelines. 
  • Integrate Big Data: Connect to a variety of data sources with more than 800 data connectors, with native support for Hadoop, MapReduce and NoSQL. Delivers clean, consistent assets at a big data scale. 
  • Deploy Anywhere: Get data from behind firewalls, data centers or in secure cloud environments. Manage data in the public cloud, with self-managed private clouds and on-premise platforms, or go hybrid. 
  • Scale As The Business Grows: Scales as more complex, larger data sets are generated to provide advanced analytics. Works with Amazon Web Services, Microsoft Azure, Google Cloud Platform, Snowflake and Databricks. 
  • Maintain Data Quality: Identify, highlight and fix issues as data moves across systems. Ensure data quality at every stage of the data pipeline with embedded checks. Preempt inconsistencies before they can impact crucial decisions. 
read more...
  • Reduce TCO: Manage seasonal and spiky task overloads by autoscaling resources as per the task load. Reduce batch-processing costs by using advanced job scheduling and shuffling techniques. 
  • Go Serverless: Do away with operational overhead from data engineering tasks. Allow teams to focus on coding, instead of managing server clusters. 
  • Integrate All Data: Replicates data from Google Cloud Storage into BigQuery, PostgreSQL or Cloud Spanner. Ingest data changes from MySQL, SQL Server and Db2.
  • Drive Analytics with AI: Build ML-powered data pipelines through support for TensorFlow Extended (TFX). Enables predictive analytics, fraud detection, real-time personalization and more. 
read more...
  • Pipeline Designer: Pull in data to create dashboards that power business insights. Build reusable pipelines to integrate data from any source, then transform it to upload to data warehouses. 
    • DIY Data Workflows: Design and preview data workflows directly in the web browser without IT help. Run pipelines directly where the data lives, with support for disparate filesystems, business apps, databases, data warehouses and messaging services. Automate data stewardship, preparation and cataloging into data pipelines. 
  • Data Inventory: Prepare, consume and share data from a single, centralized hub. Make informed decisions by putting unique, accurate data at the center of business. 
    • View data trustworthiness at a glance with the Trust Score. Aggregates multiple metrics into a single, easy-to-understand score, scaling from 0 to 5. 
    • Flags data silos across sources and resolves the gap with reusable and shareable data assets. 
    • Make data work for you by sharing assets between the data preparation and designer modules. 
  • Talend Open Studio: Handles big data by leveraging Hadoop and its databases, or HBase, HCatalog, HDFS and Hive. Connects to Oracle, Teradata, Microsoft SQL Server, Marketo, Salesforce, Netsuite, SAP, Sugar CRM, Microsoft Dynamics, SMTP, FTP/SFTP, LDAP and more. Provides an Eclipse-based integrated environment (IDE) for system development. 
  • Talend Sandbox: The vendor provides a sandbox environment for data warehouse optimization, clickstream analytics, social media sentiment analysis and Apache weblog analytics. 
read more...
  • Pipeline Authoring: Build data processing workflows with ML capabilities through Google’s Vertex AI Notebooks and deploy with the Dataflow runner. Design Apache Beam pipelines in a read-eval-print-loop (REVL) workflow. 
    • Templates: Run data processing tasks with Google-provided templates. Package the pipeline into a Docker image, then save as a Flex template in Cloud Storage to reuse and share with others. 
  • Streaming Analytics: Join streaming data from publish/subscribe (Pub/Sub) messaging systems with files in Cloud Storage and tables in BigQuery. Build real-time dashboards with Google Sheets and other BI tools. 
  • Workload Optimization: Automatically partitions data inputs and consistently rebalances for optimal performance. Reduces the impact of hot keys on pipeline functioning. 
    • Horizontal Autoscaling:  Automatically chooses and reallocates the number of worker instances required to run the job. 
    • Task Shuffling: Moves pipeline tasks out of the worker VMs into the backend, separating compute from state storage. 
  • Security: Turn off public IPs; secure data with a customer-managed encryption key (CMEK). Mitigate the risk of data exfiltration by integrating with VPC Service Controls. 
  • Pipeline Monitoring: Monitor job status, view execution details and receive result updates through the monitoring or command-line interface. Troubleshoot batch and streaming pipelines with inline monitoring. Set alerts for exceptions like stale data and high system latency. 
read more...

Product Ranking

#10

among all
ETL Tools

#15

among all
ETL Tools

Find out who the leaders are

Analyst Rating Summary

97
94
100
93
100
78
92
92
Show More Show More
Data Delivery
Data Quality
Data Transformation
Metadata Management
Performance and Scalability
Data Transformation
Metadata Management
Platform Security
Workflow Management
Data Delivery

Analyst Ratings for Functional Requirements Customize This Data Customize This Data

Talend
Dataflow
+ Add Product + Add Product
Data Delivery Data Quality Data Sources And Targets Connectivity Data Transformation Metadata Management Platform Capabilities Workflow Management 100 100 92 100 100 100 89 93 78 92 100 100 0 100 0 25 50 75 100
100%
0%
0%
80%
20%
0%
100%
0%
0%
58%
25%
17%
89%
0%
11%
86%
0%
14%
100%
0%
0%
100%
0%
0%
100%
0%
0%
100%
0%
0%
100%
0%
0%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
80%
0%
20%
100%
0%
0%

Analyst Ratings for Technical Requirements Customize This Data Customize This Data

100%
0%
0%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
100%
0%
0%
100%
0%
0%

User Sentiment Summary

Great User Sentiment 270 reviews
Great User Sentiment 106 reviews
82%
of users recommend this product

Talend has a 'great' User Satisfaction Rating of 82% when considering 270 user reviews from 4 recognized software review sites.

86%
of users recommend this product

Dataflow has a 'great' User Satisfaction Rating of 86% when considering 106 user reviews from 3 recognized software review sites.

n/a
4.1 (31)
4.19 (22)
n/a
4.0 (52)
n/a
4.1 (145)
4.4 (59)
4.1 (51)
4.2 (16)

Awards

SelectHub research analysts have evaluated Talend and concluded it earns best-in-class honors for Data Transformation.

Data Transformation Award

SelectHub research analysts have evaluated Dataflow and concluded it earns best-in-class honors for Data Transformation and Workflow Management.

Data Transformation Award
Workflow Management Award

Synopsis of User Ratings and Reviews

Simplified Lineage Tracking: Visually map data flows and transformations for enhanced auditability and compliance, ensuring your data journey is clear and transparent.
Centralized Policy Management: Define and enforce data quality, access, and security rules across the organization, fostering a consistent and controlled data environment.
Automated Data Catalog: Discover, document, and govern all data assets for improved data visibility and utilization, empowering your teams to find and leverage the right data.
Streamlined Data Masking & Anonymization: Protect sensitive data during development and testing while preserving data utility, safeguarding privacy and complying with regulations.
Scalable & Collaborative:** Manage data governance across diverse data sources and teams with ease, adapting to your evolving data landscape and fostering collaboration.
Show more
Ease of use: Users consistently praise Dataflow's intuitive interface, drag-and-drop pipeline building, and visual representations of data flows, making it accessible even for those without extensive coding experience.
Cost-effectiveness: Dataflow's pay-as-you-go model is highly appealing, as users only pay for the compute resources they actually use, aligning costs with data processing needs and avoiding upfront infrastructure investments.
Serverless architecture: Users appreciate Dataflow's ability to automatically scale resources based on workload, eliminating the need for manual provisioning and management of servers, reducing operational overhead and streamlining data processing.
Scalability: Dataflow's ability to seamlessly handle massive data volumes and fluctuating traffic patterns is highly valued by users, ensuring reliable performance even during peak usage periods or when dealing with large datasets.
Integration with other cloud services: Users find Dataflow's integration with other cloud services, such as storage, BigQuery, and machine learning tools, to be a significant advantage, enabling the creation of comprehensive data pipelines and analytics workflows within a unified ecosystem.
Show more
Limited Native Profiling: Lacks built-in tools for advanced data profiling and quality monitoring, requiring additional integrations or third-party tools, increasing complexity and potentially costs.
Steep Learning Curve: Complex UI and configuration can be challenging for beginners, especially non-technical users, requiring significant training and investment in onboarding and ongoing support.
Customization Challenges: Extensive customization options, while offering flexibility, can lead to complexity and maintenance overhead, particularly for large deployments or intricate data governance requirements.
Limited Community Support: While the Talend community is active, it may not be as extensive as other data governance solutions, potentially impacting troubleshooting and knowledge sharing, especially for niche issues or advanced configurations.
Enterprise Features in Paid Editions: Key data governance features like advanced lineage tracking, data masking, and data quality monitoring often require purchasing higher-tiered paid editions, increasing costs and potentially limiting accessibility for organizations with budget constraints.
Show more
Limited customization: Some users express constraints in tailoring certain aspects of Dataflow's behavior to precisely match specific use cases, potentially requiring workarounds or compromises.
Occasional processing delays: While generally efficient, users have reported occasional delays in processing, especially with complex pipelines or during periods of high data volume, which could impact real-time analytics.
Learning curve for complex pipelines: Building intricate Dataflow pipelines can involve a steeper learning curve, especially for those less familiar with Apache Beam concepts or distributed data processing principles.
Dependency on other cloud services: Dataflow's seamless integration with other cloud services is also seen as a potential drawback by some users, as it can increase vendor lock-in and limit portability across different cloud platforms.
Need for more built-in templates: Users often request a wider range of pre-built templates and integrations with external data sources to accelerate pipeline development and streamline common use cases.
Show more

Users praise Talend's visual drag-and-drop builder as a major draw, especially when compared to code-heavy platforms like Informatica. "Talend's UI feels much more intuitive and beginner-friendly," one reviewer shared, making it easier to onboard non-technical colleagues. However, its steeper learning curve compared to simpler tools like Snaplogic was also noted, demanding more training and initial investment.Talend's open-source roots and wide range of connectors were lauded, especially for cost-conscious businesses. One user compared it to IBM DataStage, noting "Talend's open-source version offers surprisingly robust functionality, making it a viable alternative for smaller budgets." However, limited native profiling compared to powerful tools like Alteryx was mentioned as a drawback, forcing integration with separate solutions and potentially raising costs.Users appreciated Talend's scalability and cloud-readiness, particularly when contrasted with legacy ETL offerings. "Talend scales seamlessly as our data needs grow," said one reviewer, making it a future-proof investment. However, some found enterprise features locked behind paid editions, like advanced lineage tracking and data quality monitoring, a disadvantage compared to competitors like Boomi that offer these capabilities across the board.Overall, Talend's balance of affordability, user-friendliness, and scalability shines through in user reviews. While it may require deeper initial investment in training and lack certain advanced features out-of-the-box, its flexibility and adaptability make it a strong contender for businesses navigating the evolving data landscape. As one user summed it up, "Talend might not be perfect, but it's a powerful tool that grows with you, and that's what matters most."

Show more

Dataflow, a cloud-based streaming analytics platform, garners praise for its ease of use, scalability, and cost-effectiveness. Users, particularly those new to streaming analytics or with limited coding experience, appreciate the intuitive interface and visual pipeline building, making it a breeze to get started compared to competitors that require more programming expertise. Additionally, Dataflow's serverless architecture and pay-as-you-go model are highly attractive, eliminating infrastructure management burdens and aligning costs with actual data processing needs, unlike some competitors with fixed costs or complex pricing structures. However, Dataflow isn't without its drawbacks. Some users find it less customizable than competing solutions, potentially limiting its suitability for highly specific use cases. Occasional processing delays, especially for intricate pipelines or high data volumes, can also be a concern, impacting real-time analytics capabilities. Furthermore, while Dataflow integrates well with other Google Cloud services, this tight coupling can restrict portability to other cloud platforms, something competitors with broader cloud compatibility might offer. Ultimately, Dataflow's strengths in user-friendliness, scalability, and cost-effectiveness make it a compelling choice for those new to streaming analytics or seeking a flexible, cost-conscious solution. However, its limitations in customization and potential processing delays might necessitate exploring alternatives for highly specialized use cases or mission-critical, real-time analytics.

Show more

Screenshots

Top Alternatives in ETL Tools


AWS Glue

Azure Data Factory

Cloud Data Fusion

Dataflow

DataStage

Fivetran

Hevo

IDMC

Informatica PowerCenter

InfoSphere Information Server

Integrate.io

Oracle Data Integrator

Pentaho

Qlik Talend Data Integration

SAP Data Services

SAS Data Management

Skyvia

SQL Server

SQL Server Integration Services

TIBCO Cloud Integration

Related Categories

Head-to-Head Comparison

WE DISTILL IT INTO REAL REQUIREMENTS, COMPARISON REPORTS, PRICE GUIDES and more...

Compare products
Comparison Report
Just drag this link to the bookmark bar.
?
Table settings